
		
			[image: Cover image]
		

	
    
      
        
          	
          	
        

        
          	
        

        
          	
            [ Article ]
          
        

        
          	Korea Journal of English Language and Linguistics - Vol. 23, No. 0, pp.461-481
        

        
          	ISSN: 1598-1398			
					(Print)
				2586-7474			
					(Online)
				
        

        
          	Print  publication date  30 Jan 2023

        

        
          	Received  12 Apr 2023
Revised  17 May 2023
Accepted  07 Jun 2023

        

        
          	
            KJELL_2023_v23_461

            DOI: 
            https://doi.org/10.15738/kjell.23..202306.461
          
        

        
          	
            Decoding BERT’s Internal Processing of Garden-Path Structures through Attention Maps
          
        

        
          	
            Jonghyun Lee ; Jeong-Ah Shin


          
        

        
          	(first author) Senior Researcher, Institute of Humanities, Seoul National University museeq@snu.ac.kr

        

        
          	(corresponding author) Professor, Division of English Language and Literature, Dongguk University jashin@dongguk.edu

        

        
          	
            
          
        

        
          	
            


          
        

        
          	
© 2023 KASELL All rights reserved

This is an open-access article distributed under the terms of the Creative Commons License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
        

        
          	
            

            

          
        

      

      
        
          	
          	
        

      

      
        
          
            Abstract
          
        

        
          Recent advancements in deep learning neural models, such as BERT, have demonstrated remarkable performance in natural language processing tasks, yet understanding their internal processing remains a challenge. This study employs the method of examining attention maps to uncover the internal processing of BERT, specifically when dealing with garden-path sentences. The analysis focuses on BERT's utilization of linguistic cues, such as transitivity, plausibility, and the presence of a comma, and evaluates its capacity for reanalyzing misinterpretations. The results revealed that BERT exhibits human-like syntactic processing by attending to the presence of a comma, showing sensitivity to transitivity, and reanalyzing misinterpretations, despite initially lacking sensitivity to plausibility. By concentrating on attention maps, the present study provides valuable insights into the inner workings of BERT and contributes to a deeper understanding of how advanced neural language models acquire and process complex linguistic structures.
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