
On the Properties of Syntactic Priming: A L2 Hierarchical Bayesian Model Approach
© 2025 KASELL All rights reserved
This is an open-access article distributed under the terms of the Creative Commons License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A range of empirical factors have been identified in the literature as interacting with the strength of syntactic priming: the lexical boost, the inverse frequency effect, and the asymmetrical decay. This study explores how these factors can be represented within a general learning framework called the hierarchical Bayesian model (HBM), utilizing data from the K-English Textbook corpus. The HBM conceptualizes syntactic knowledge as a hierarchical structure of syntactic statistics, which is continually updated through Bayesian inference based on the language experience (Xu and Futrell 2024). Given this background, the current research aims to investigate the underlying mechanism of syntactic priming from a different angle using statistical learning. After building the L2 HBM, two simulations are conducted employing Pickering and Branigan’s (1998) English ditransitive materials. In so doing, we demonstrate that the L2 HBM successfully captures the aforementioned properties of syntactic priming, as a previous study reported. To account for these observed factors simultaneously, we support the claim that empirical properties of syntactic priming are realized in the cognitive model architecture.
Keywords:
syntactic priming, lexical boost, inverse frequency, asymmetrical decay, hierarchical Bayesian model, syntactic statistics, probability, ditransitivesAcknowledgments
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea. (NRF-2023S1A5B5A16080469)
References
-
Bernolet, S. and R. J. Hartsuiker. 2010. Does verb bias modulate syntactic priming? Cognition 114(3), 455-461.
[https://doi.org/10.1016/j.cognition.2009.11.005]
-
Bock, K. 1986. Syntactic persistence in language production. Cognitive Psychology 18(3), 355-387.
[https://doi.org/10.1016/0010-0285(86)90004-6]
-
Bock, K. and H. Loebell. 1990. Framing sentences. Cognition 35(1), 1-39.
[https://doi.org/10.1016/0010-0277(90)90035-I]
-
Bock, K., H. Loebell and R. Morey. 1992. From conceptual roles to structural relations: bridging the syntactic cleft. Psychological Review 99(1), 150.
[https://doi.org/10.1037//0033-295X.99.1.150]
-
Bock, K. and Z. M. Griffin. 2000. The persistence of structural priming: Transient activation or implicit learning? Journal of Experimental Psychology: General 129(2), 177.
[https://doi.org/10.1037//0096-3445.129.2.177]
-
Bock, K., G. S. Dell., F. Chang and K. H. Onishi. 2007. Persistent structural priming from language comprehension to language production. Cognition 104(3), 437-458.
[https://doi.org/10.1016/j.cognition.2006.07.003]
-
Branigan, H. P., M. J. Pickering and A. A. Cleland. 1999. Syntactic priming in written production: Evidence for rapid decay. Psychonomic Bulletin & Review 6, 635-640.
[https://doi.org/10.3758/BF03212972]
-
Branigan, H. P., M. J. Pickering and A. A. Cleland. 2000. Syntactic co-ordination in dialogue. Cognition 75(2), B13-B25.
[https://doi.org/10.1016/S0010-0277(99)00081-5]
-
Chang, F., G. S. Dell and K. Bock. 2006. Becoming syntactic. Psychological Review 113(2), 234.
[https://doi.org/10.1037/0033-295X.113.2.234]
-
Choi, S. J. and M. K. Park. 2022. Syntactic priming in the L2 neural language model. The Journal of Linguistic Science 103, 81-104.
[https://doi.org/10.21296/jls.2022.12.103.81]
-
Choi, S. J. 2024. On Relative Clause Attachment Preferences in the L2 LSTM LM. Studies in Modern Grammar 122, 213-234.
[https://doi.org/10.14342/smog.2023.122.213]
-
Ferreira, V. S. 2003. The persistence of optional complementizer production: Why saying “that” is not saying “that” at all. Journal of Memory and Language 48(2), 379-398.
[https://doi.org/10.1016/S0749-596X(02)00523-5]
- Goodman, N. D. and A. Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages. http://dippl.org, . (Accessed: 2024-5-3)
-
Hartsuiker, R. J. and H. H. Kolk. 1998. Syntactic persistence in dutch. Language and Speech 41(2), 143-184.
[https://doi.org/10.1177/002383099804100202]
-
Hartsuiker, R. J., S. Bernolet., S. Schoonbaert., S. Speybroeck and D. Vanderelst. 2008. Syntactic priming persists while the lexical boost decays: Evidence from written and spoken dialogue. Journal of Memory and Language 58(2), 214-238.
[https://doi.org/10.1016/j.jml.2007.07.003]
-
Hawkins, R. D., M. Franke., M. C. Frank., A. E. Goldberg., K. Smith., T. L. Griffiths and N. D. Goodman. 2023. From partners to populations: A hierarchical bayesian account of coordination and convention. Psychological Review Review 130(4), 977.
[https://doi.org/10.1037/rev0000348]
-
Jaeger, T. F. and N. E. Snider. 2013. Alignment as a consequence of expectation adaptation: Syntactic priming is affected by the prime’s prediction error given both prior and recent experience. Cognition 127(1), 57-83.
[https://doi.org/10.1016/j.cognition.2012.10.013]
-
Jumelet, J., W. Zuidema and A. Sinclair. 2024. Do Language Models Exhibit Human-like Structural Priming Effects?. arXiv preprint arXiv:2406.04847, .
[https://doi.org/10.18653/v1/2024.findings-acl.877]
-
Kaschak, M. P., T. J. Kutta and J. L. Jones. 2011. Structural priming as implicit learning: Cumulative priming effects and individual differences. Psychonomic Bulletin & Review 18, 1133-1139.
[https://doi.org/10.3758/s13423-011-0157-y]
-
Kemp, C., A. Perfors. and J. B. Tenenbaum. 2007. Learning overhypotheses with hierarchical bayesian models. Developmental Science 10(3), 307-321.
[https://doi.org/10.1111/j.1467-7687.2007.00585.x]
-
Kleinschmidt, D. F. and T. F. Jaeger. 2015. Robust speech perception: recognize the familiar, generalize to the similar, and adapt to the novel. Psychological review 122(2), 148.
[https://doi.org/10.1037/a0038695]
-
Levelt, W. J. and S. Kelter. 1982. Surface form and memory in question answering. Cognitive Psychology 14(1), 78-106.
[https://doi.org/10.1016/0010-0285(82)90005-6]
-
MacDonald, M. C., N. J. Pearlmutter and M. S Seidenberg. 1994. The lexical nature of syntactic ambiguity resolution. Psychological Review 101(4), 676.
[https://doi.org/10.1037//0033-295X.101.4.676]
-
Mahowald, K., A. James., R. Futrell and E. Gibson. 2016. A meta-analysis of syntactic priming in language production. Journal of Memory and Language 91, 5-27.
[https://doi.org/10.1016/j.jml.2016.03.009]
-
McRae, K., M. J. Spivey-Knowlton and M. K. Tanenhaus. 1998. Modeling the influence of thematic fit (and other constraints) in on-line sentence comprehension. Journal of Memory and Language 38(3), 283-312.
[https://doi.org/10.1006/jmla.1997.2543]
-
Michaelov, J. A., C. Arnett., T. A Chang and B. K. Bergen. 2023. Structural priming demonstrates abstract grammatical representations in multilingual language models. arXiv preprint arXiv:2311.09194, .
[https://doi.org/10.18653/v1/2023.emnlp-main.227]
-
Pickering, M. J. and H. P. Branigan. 1998. The representation of verbs: Evidence from syntactic priming in language production. Journal of Memory and Language 39(4), 633-651.
[https://doi.org/10.1006/jmla.1998.2592]
-
Pickering, M. J. and V. S. Ferreira. 2008. Structural priming: A critical review. Psychological Bulletin 134(3), 427.
[https://doi.org/10.1037/0033-2909.134.3.427]
-
Prasad, G., M. Van Schijndel and T. Linzen. 2019. Using priming to uncover the organization of syntactic representations in neural language models. arXiv preprint arXiv:1909.10579, .
[https://doi.org/10.18653/v1/K19-1007]
-
Reitter, D., F. Keller and J. D. Moore. 2011. A computational cognitive model of syntactic priming. Cognitive Science 35(4), 587-637.
[https://doi.org/10.1111/j.1551-6709.2010.01165.x]
-
Scheepers, C. 2003. Syntactic priming of relative clause attachments: Persistence of structural configuration in sentence production. Cognition 89(3), 179-205.
[https://doi.org/10.1016/S0010-0277(03)00119-7]
-
Sinclair, A., J. Jumelet, W. Zuidema and R. Fernández. 2021. Syntactic persistence in language models: Priming as a window into abstract language representations. arXiv preprint arXiv:2109.14989, .
[https://doi.org/10.1162/tacl_a_00504]
-
Spivey-Knowlton, M. and J. C. Sedivy. 1995. Resolving attachment ambiguities with multiple constraints. Cognition 55(3), 227-267.
[https://doi.org/10.1016/0010-0277(94)00647-4]
-
Tenenbaum, J. B., C. Kemp., T. L. Griffiths and N. D. Goodman. 2011. How to grow a mind: Statistics, structure, and abstraction. Science 331(6022), 1279-1285.
[https://doi.org/10.1126/science.1192788]
-
Tooley, K. M. and M. J. Traxler. 2010. Syntactic priming effects in comprehension: A critical review. Language and Linguistics Compass 4(10), 925-937.
[https://doi.org/10.1111/j.1749-818X.2010.00249.x]
-
Tooley, K. M. 2023. Structural priming during comprehension: A pattern from many pieces. Psychonomic Bulletin & Review 30(3), 882-896.
[https://doi.org/10.3758/s13423-022-02209-7]
-
Tree, J. E. F. and P. J. Meijer. 1999. Building syntactic structure in speaking. Journal of Psycholinguistic Research 28, 71-90.
[https://doi.org/10.1023/A:1023239604158]
-
Van Schijndel, M. and T. Linzen. 2018. A neural model of adaptation in reading. arXiv preprint arXiv:1808.09930, .
[https://doi.org/10.18653/v1/D18-1499]
- Xu, W. and R. Futrell. 2024. A hierarchical Bayesian model for syntactic priming. arXiv preprint arXiv:2405.15964, .
-
Yi, E., J.-P. Koenig and D. Roland. 2019. Semantic similarity to high-frequency verbs affects syntactic frame selection. Cognitive Linguistics 30(3), 601-628.
[https://doi.org/10.1515/cog-2018-0029]
- Zhou, Z. and R. Frank. 2023. What affects priming strength? simulating structural priming effect with pips. Proceedings of the Society for Computation in Linguistics 6(1), 413-417.