The Korean Association for the Study of English Language and Linguistics
[ Article ]
Korea Journal of English Language and Linguistics - Vol. 19, No. 4, pp.817-836
ISSN: 1598-1398 (Print)
Print publication date 31 Dec 2019
Received 01 Nov 2019 Revised 10 Dec 2019 Accepted 18 Dec 2019
DOI: https://doi.org/10.15738/kjell.19.4.201912.817

딥러닝을 이용한 셰익스피어 작품의 감정 분석

서혜진 ; 이종현 ; 신정아*
제1저자, 동국대학교
공동저자, 서울대학교
*교신저자, 동국대학교
Sentiment analysis of Shakespeare’s plays using a deep learning technique
Seo, Hye-Jin ; Jonghyun Lee ; Jeong-Ah Shin*

Abstract

This study examined the sentiment movement of Shakespeare’s plays (four tragedies and five comedies) using a deep learning technique. Sentiment analyses have been used in several fields to extract aspects of opinions using sentiment dictionaries such as ANEW, AFFINE, and VADER, which involve an evaluation of a word list for sentiment analysis. Nowadays, however, as deep learning algorithms develop, it became possible to conduct a sentiment analysis by using deep learning algorithms. This study directly compared the output of a simple deep learning model (trained with tweeters) with the output of a sentiment dictionary, VADER, targeting Shakespeare’s plays. The results showed that the simple deep learning model led to a similar performance with VADER for Shakespeare’s tragedies and outperformed the sentiment dictionary especially for Shakespeare’s comedies.

Keywords:

sentiment analysis, deep learning, Shakespeare, tweeter data

References

  • 김헌(Kim, H.). (2011). 희극 주인공의 성격 연구: 아리스토텔레스의 [시학] 과 Tractatus Coislinianus 120 을 중심으로. 《서양고전학연구》(The Journal of Greco-Roman Studies) 45, 153-182.
  • 김혜영, 김영우, 이장호, 양혜진, 신동광(Kim, H., Y. Kim, J. Lee, H. Yang and D. Shin). (2019). 『영어학습을 위한 인공지능 챗봇 활용 및 제작』
  • 노영숙(No, Y.). (1987). Hamlet의 희극적 요소와 비극성과의 관계.
  • 심상교(Shim, S.). (2013). 서사방식에 대한 일연구-비극과 희극을 해석하는 새로운 관점. 《우리어문연구》(The Studies of Korean Language and Literature) 47, 69-91.
  • 오영택, 김민태, 김우주(Oh, Y., M. Kim and W. Kim). (2019). Parallel Stacked Bidirectional LSTM 모델을 이용한 한국어 영화리뷰 감성 분석.《정보과학회논문지》(Journal of KIISE: Information Networking) 46, 45-49. [https://doi.org/10.5626/JOK.2019.46.1.45]
  • 이행수(Lee, H.). (2002). [베니스의 상인]: 안정과 정체성의 추구. 《셰익스피어 리뷰》(Shakespeare Review) 38, 977-999.
  • 장세은, 이경은, 박호민, 송원문, 정해룡, 이수상, 김재훈. (2019). 대화코퍼스를 통한 셰익스피어 비극 작품과 주요 남녀 등장인물 간의 감정분석. 《언어과학》(Journal of Language Sciences) 26(1), 115-147. [https://doi.org/10.14384/kals.2019.26.1.115]
  • 한국정보통신기술협회 (2012). TTA 정보통신용어사전, http://terms.tta.or.kr, 에서 검색했음
  • 허찬, 온승엽(Heo, C. and S. On). (2017). “Word2vec와 Label Propagation을 이용한 감성사전 구축방법”. 《한국차세대컴퓨팅학회 논문지》(The Journal of Korean Institute of Next Generation Computing) 13, 93-101.
  • Do, H. H., P. W. C. Prasad., A. Maag and A. Alsadoon. (2019). Deep learning for aspect-based sentiment analysis: A comparative review. Expert Systems With Applications 118, 272-299. [https://doi.org/10.1016/j.eswa.2018.10.003]
  • Gilbert, E. and C. J. Hutto. (2014). VADER: A parsimonious rule-based modelfor sentiment analysis of social media text. Eighth International Conference on Weblogs and Social Media, 216-225.
  • Kovacevic, M., J. Y. Nie and C. Davidson. (2008). Providing answers to questions from automatically collected web pagesfor intelligent decision making in the construction sector. Journal of Computing in Civil Engineering 22, 3-13. [https://doi.org/10.1061/(ASCE)0887-3801(2008)22:1(3)]
  • Maas, A. L., R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng and C Potts. 2011. Learning word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Volume 1, 142-150. Association for Computational Linguistics.
  • Nalisnick, E. T. and H. S. Baird. 2013. Extracting sentiment networks from Shakespeare’s plays. 2013 12th International Conference on Document Analysis and Recognition, 758-762. IEEE. [https://doi.org/10.1109/ICDAR.2013.155]
  • Nielsen, F. Å. 2011. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903
  • Rybka, R., A. Sboev, I. Moloshnikov and D. Gudovskikh. 2015. Morpho-syntactic parsing based on neural networks and corpus data. 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT), 89-95. IEEE. [https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382975]

서혜진(Seo, Hye-Jin), 대학원생(Graduate Student)동국대학교영어영문학부04620 서울특별시 중구 필동로 1길 30(30 Pildong-ro 1 gil, Jung-gu, Seoul 04620)Tel: 02) 2260-8705E-mail: seohj0951@gmail.com

이종현(Lee, Jonghyun), 대학원생(Graduate Student)서울대학교(Seoul National University)영어영문학과(Dept. of English Language and Literature)08826 서울특별시 관악구 관악로 1(1 Gwanak-ro, Gwanak-gu, Seoul 08826)Tel: 02) 880-6078E-mail: museeq@snu.ac.kr

신정아(Shin, Jeong-Ah), 교수(Professor)동국대학교(Dongguk University)영어영문학부(Division of English Language and Literature)04620 서울특별시 중구 필동로 1길 30(30 Pildong-ro 1 gil, Jung-gu, Seoul 04620)Tel: 02) 2260-3167E-mail: jashin@dongguk.edu