The Korean Association for the Study of English Language and Linguistics
[ Article ]
Korea Journal of English Language and Linguistics - Vol. 25, No. 0, pp.330-366
ISSN: 1598-1398 (Print) 2586-7474 (Online)
Print publication date 31 Jan 2025
Received 04 Dec 2024 Revised 24 Jan 2025 Accepted 08 Mar 2025
DOI: https://doi.org/10.15738/kjell.25..202503.330

인공지능 디지털 영어교육의 현황과 전망: 자연어처리 기반 텍스트 분석

Youngkyo Oh
Lecturer, Dept. of Education, College of Education, Chonnam National University; 77, Yongbong-ro, Buk-gu, Gwangju, Korea, 61186 5young-kyo@hanmail.net
Issues and prospects of AI digital English education: Text analysis Based on Natural Language Processing


© 2025 KASELL All rights reserved
This is an open-access article distributed under the terms of the Creative Commons License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The study aimed to quantify the content and keyword relationships in AI-based English education texts to understand the current status of English education and gain insights into the future direction of English education. Data analysis involved a text analysis that utilized Natural Language Processing (NLP) techniques to extract meaningful content and information from large-scale text data, identifying new meanings and knowledge at the contextual level by considering the relationships between texts and words. The primary analysis methods used included keyword analysis, network text analysis, and topic modeling. The research findings are as follows. First, a frequency analysis of the collected texts revealed terms such as ‘technology,’ ‘learning,’ ‘textbooks,’ ‘big data,’ ‘application,’ ‘mathematics,’ ‘information,’ ‘students,’ and ‘edtech’ based on Term Frequency (TF) values. TF-IDF (Term Frequency-Inverse Document Frequency) values identified ‘textbooks,’ ‘learning,’ ‘big data,’ and ‘edtech.’ Additionally, N-gram analysis highlighted the term ‘development and implementation of AI digital textbooks.’ Next, through ego-network analysis for relationship exploration, words related to ‘learning,’ ‘textbooks,’ ‘technology and future trends’ were found to be connected around the term ‘English.’ Finally, topic modeling analysis using Latent Dirichlet Allocation (LDA) classified the texts into five topics: ‘AI-Based Educational Innovation,’ ‘Transition to a Digital-Based Learning Environment,’ ‘Future-Oriented Changes in the Education System,’ ‘Learner-Centered Personalized English Education,’ and ‘Technological Innovation and Services in the Education Industry.’ This study provides insights into the future direction of English education by providing educators and learners with AI-powered text analysis tools.

Keywords:

natural language processing, AI digital English education, network text analysis, topic modeling

References

  • 권선희(Kwon, S.). 2023. 텍스트 네트워크 분석을 통한 포스트 코로나 시대 영어교육 키워드 연구(A Study on Keywords of English Education in the Post- COVID-19 by Text Network Analysis). ≪영어영문학≫(The Mirae Journal of English Language and Literature) 28-1, 99-121. [https://doi.org/10.46449/MJELL.2023.02.28.1.99]
  • 김성근⋅조혁준⋅강주영(Kim, S.-G., H.-J. Cho and J. Y. Kang.). 2016. 학술연구에서의 텍스트 마이닝 활용 현황 및 주요 분석기법(The Status of Using Text Mining in Academic Research and Analysis Methods). ≪정보화연구≫(The Journal of Information Technology and Architecture) 13-2, 317-329.
  • 김수현⋅이영준⋅신진영⋅박기영(Kim, S.-H., Y. J. Lee, J. Shin and K. Y. Park.). 2019. 거시경제 분석을 위한 텍스트 마이닝(Text Mining for Economic Analysis). ≪한국경제의 분석≫(Journal of Korean Economic Analysis) 26-1, 1-85.
  • 김인옥(Kim, I.). 2019. 디지털교과서 활용 쓰기 교수-학습이 초등학생들의 영어 쓰기 및 자기주도적 학습 태도에 미치는 영향(The effects of writing instructions using digital textbook on elementary school English learners’ writing abilities and self-directed learning attitude). ≪초등영어교육≫(Primary English Education) 25-3, 149-168. [https://doi.org/10.25231/pee.2019.25.3.149]
  • 김정렬(Kim, J.-R.). 2015. 보편적 학습 설계에 근거한 영어과 디지털 교과서 개선 방안(Prospective Changes of English Digital Textbook Based on the Universal Design for Learning). ≪한국콘텐츠학회논문지≫(The Journal of the Korea Contents Association) 15-7, 674-683. [https://doi.org/10.5392/JKCA.2015.15.07.674]
  • 맹은경⋅고호경⋅손복은(Maeng, U., H. K. Ko and B. E. Son.). 2023. 디지털· AI 기반 영어교육 연구 동향: 텍스트 네트워크 분석 및 토픽모델링 중심으로(Utilizing digital·AI in English education: Research trends through text network analysis and topic modeling). ≪현대영어교육≫(Modern English Education) 24, 156-170. [https://doi.org/10.18095/meeso.2023.24.1.156]
  • 박문영(Park, M.). 2023. 중학교 영어 AI 디지털교과서 도입을 둘러싼 쟁점과 과제(Challenges and considerations in adopting AI digital textbook for middle school English). ≪중등영어교육≫(Secondary English Education) 16-4, 151-167. [https://doi.org/10.20487/kasee.16.4.202311.151]
  • 박한우(Park, H. W. and L. Leydesdorff.). 2004. 한국어의 내용분석을 위한 KrKwic 프로그램의 이해와 적용: Daum.net에서 제공된 지역혁신에 관한 뉴스를 대상으로(Understanding the KrKwic: A computer program for the analysis of Korean text). ≪Journal of The Korean Data Analysis Society≫ 6-5, 1377-1387.
  • 박지수⋅길준민(Park, J. S. and J. Gil.). 2020. 4차 산업혁명 시대의 에듀테크(Edutech in the Era of the 4th Industrial Revolution). ≪정보처리학회논문지: 소프트웨어 및 데이터 공학≫(The Transactions of the Korea Information Processing Society) 9-11, 329-331.
  • 백영민(Baek, Y.-M.). 2020. 『R을 이용한 텍스트 마이닝』(Text Mining using R). 한울아카데미(Hanul Academy).
  • 송민(Song, M.). 2017. 『텍스트 마이닝』(Text Mining). 청람(Cheongram).
  • 신동광(Shin, D.). 2019. 인공지능 챗봇의 영어 교육적 활용 가능성과 한계(Feasibility and Constraints in Applying an AI Chatbot to English Education). ≪Brain, Digital, & Learning≫ 9-2, 29-40. [https://doi.org/10.31216/BDL.2019.9.2.029]
  • 신동광(Shin, D.). 2022. 영어교육에서 AI 활용의 한계는 어디쯤일까?: 자동 지문 생성 및 자동 문항 생성의 활용 가능성(What is the limit for using AI in English education?: Feasibility of using Automated Text Generation and Automated Item Generation.). ≪영어교과교육≫(Journal of the Korea English Education Society) 21-3, 147-163.
  • 심창용(Sim, C.-Y.). 2024. AI 디지털교과서 활용 영어교육의 기초(The basics of AIDT-powered English education). ≪ESP Review≫ 6-2, 137-154.
  • 우신욱⋅장영재(Woo, S. and Y. Chang.). 2016. 텍스트마이닝을 활용한 연준의 통화정책방향 의결문 분석(An Analysis of FOMC Statements by Text Mining Methods). ≪Journal of the Korean Data Analysis Society≫ 18-1, 179-188.
  • 윤태일⋅이수안(Yoon, T.-I. and S.-A. Lee.). 2018. 『파이썬으로 텍스트 분석하기: 전략커뮤니케이션을 위한 파이썬 텍스트 마이닝』(Text Analysis with Python: Python Text Mining for Strategic Communication). 늘봄(Neulbom).
  • 이규영⋅김희진(Lee, G. Y and H. Kim.). 2020. 가상현실 기반 영어 학습이 초등학생의 어휘성취도 및 정의적 영역에 미치는 영향(The Effects of Virtual Reality Based English Learning on Vocabulary Achievements and Affective Domains of Elementary Students). ≪학습자중심교과교육연구≫(The Journal of Learner-Centered Curriculum and Instruction) 20-16, 1213-1235. [https://doi.org/10.22251/jlcci.2020.20.16.1213]
  • 이대영⋅이현숙(Lee, D. Y. and H. S. Yi.). 2021. LDA 토픽 모델링의 적정 토픽 수 결정 방법 탐색: 혼잡도와 조화평균법 활용을 중심으로(Exploring methods for determining the appropriate number of topics in LDA: Focusing on perplexity and harmonic mean method). ≪교육평가연구≫(Journal of Educational Evaluation) 34-1, 1-30. [https://doi.org/10.31158/JEEV.2021.34.1.1]
  • 이삭(Lee, S.). 2019. 게이미피케이션 기반 AI 챗봇 활용 수업이 초등학생의 영어 말하기 수행 및 정의적 영역에 미치는 영향(The effects of Gamification-based Artificial Intelligence Chatbot activities on elementary English learners’ speaking performance and affective domains). ≪초등영어교육≫(Primary English Education) 25-3, 75-98. [https://doi.org/10.25231/pee.2019.25.3.75]
  • 이은혜⋅안혜성⋅박매란(Lee, E.-H., H. Ahn and M.-R. Park.). 2023. COVID-19 팬데믹 전·후의 대학 교양영어 연구 동향 분석: Topic Modeling 활용(Research trend analysis in college general English program before and after the COVID-19 Pandemic: Utilizing topic modeling). ≪영어교육≫(English Teaching) 78-3, 125-145. [https://doi.org/10.15858/engtea.78.3.202309.125]
  • 이정화(Lee, J. H.). 2023. 초등학교 영어 AI 디지털교과서의 전망과 과제(Promise and Challenges of AI based English Digital Textbooks in Elementary Schools). ≪중등영어교육≫(Secondary English Education) 16-4, 51-65. [https://doi.org/10.20487/kasee.16.4.202311.51]
  • 이창수(Lee, C.-S.). 2011. 엔그램(n-gram) 분석을 통한 번역 한국어와 비번역 한국어 간의 어휘묶음 유형 차이 사례 연구(N-gram Analysis of Phrasal Differences between Translational and Orignal Korean News Texts). ≪통번역학연구≫(Interpreting and Translation Studies) 15, 317-340.
  • 임희정(Ihm, H.-J.). 2014. 다중 문해력 교육을 위한 초등영어 디지털교과서 기반 교수-학습 모형 연구(A Study of the Elementary English Digital Textbook-based Instruction and Learning Model for Multiliteracy Education). ≪한국초등교육≫(Korean Journal of Elementary Education) 25-1, 261-275. [https://doi.org/10.20972/kjee.25.1.201403.261]
  • 정대연⋅배지영(Jung, D.-Y. and J. Bae.). 2021. 고등학생들의 디지털 영어학습전략 사용에 관한 연구(A study on the high school students’ use of digital English learning strategies.). ≪영어교과교육≫(Journal of the Korea English Education Society) 20-1, 179-201.
  • 진설아⋅송민(Jin, S. and M. Song.). 2016. 토픽모델링 기반 정보학 분야 학술지의 학제성 측정 연구(Topic Modeling based Interdisciplinarity Measurement in the Informatics Related Journals). ≪정보관리학회지≫(Journal of the Korean Society for Information Management) 33-1, 7-32. [https://doi.org/10.3743/KOSIM.2016.33.1.007]
  • 최원경(Choi, W.). 2020. AI 챗봇을 활용한 초등영어 과정중심 말하기 평가: 가능성과 한계(Process-oriented speaking assessment of primary English using AI chatbots: Possibilities and limitations). ≪초등영어교육≫(Primary English Education) 26-1, 131-152. [https://doi.org/10.25231/pee.2020.26.1.131]
  • 최원경(Choi, W.). 2021. VR 기반 영어 수업에 대한 초등학생의 인식과 정의적 영역 효과 탐색(An exploratory study on elementary students’ recognition and the affective effects of the VR-based English class). ≪초등영어교육≫(Primary English Education) 27-4, 29-49. [https://doi.org/10.25231/pee.2021.27.4.29]
  • 한종임(Han, J.-I.). 2014. 영어 디지털교과서 활용 학습 모형이 중학교 학습자의 영어학습 및 태도에 미치는 영향(The effects of learning models of English digital textbooks on Korean middle school students’ English learning and attitudes toward English.). ≪멀티미디어언어교육≫(Multimedia-Assisted Language Learning) 17-1, 132-158. [https://doi.org/10.15702/mall.2014.17.1.132]
  • 황요한(Hwang, Y.). 2021. 메타버스(Metaverse)로의 초대, 새로운 교육공간의 필요성과 미래교육에 관한 고찰(Invitation to Metaverse: A discussion on the Need of a New Space for Future Education). ≪언어연구≫(The Journal of Studies in Language) 37-3, 377-389.
  • 황은희⋅장지현⋅양현경(Hwang, E., J. Jang and H.-G. Yang.). 2019. 텍스트 마이닝 기법을 활용한 자유학기제 연구동향 분석(An Analysis of the Research Trends in Free-Semester Using Text-Mining Techniques). ≪교육문화연구≫(Journal of Education & Culture) 25-3, 299-318.
  • Blei, D. M., A. Y. Ng and M. I. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research 3, 993-1022.
  • Cao, J., T. Xia, J. Li, Y. Zhang and S. Tang. 2009. A density-based method for adaptive LDA model selection. Neurocomputing 72(7-9), 1775-1781. [https://doi.org/10.1016/j.neucom.2008.06.011]
  • Cha, S., J. Kim and S. Nam. 2021. Research trend analysis of AI chatbot in English education. Journal of the Korea English Education Society 20(1), 203-225.
  • Chakraborty, R. and S. K. Sarma. 2024. N-Gram based Assamese Question Pattern Extraction and Probabilistic Modelling. Journal of Electrical Systems 20(3), 712-726. [https://doi.org/10.52783/jes.2996]
  • Chang, J., S. Gerrish, C. Wang, J. L. Boyd-Graber and D. M. Blei. 2009. Reading tea leaves: How humans interpret topic models. Advances in Neural Information Processing System 22, 88-296.
  • Cho, H. J., S. G. Kim and J. Y. Kang. 2017. An empirical analysis of doppelgänger brand image effects: Focused on the Internet community. The Journal of Information Systems 26(1), 21-51. [https://doi.org/10.5859/KAIS.2017.26.1.21]
  • Chun, H., S. Lee and I. Park. 2021. A systematic review of AI technology use in English education. Multimedia-Assisted Language Learning 24(1), 87-103.
  • Chung, P., H. Ahn. and K. Y. Kwahk. 2019. Identification of core features and values of smart phone design using text mining and social network analysis. Korean Business Association 32(1), 27-47. [https://doi.org/10.18032/kaaba.2019.32.1.27]
  • Danowski, J. A. 1993. Network analysis of message content. In W. D. Richards Jr. and G. A. Barnett, eds., Progress in Communication Sciences, 197-221. Ablex.
  • Dizon, G. 2020. Evaluating intelligent personal assistants for L2 listening and speaking development. Language Learning & Technology 7(1), 1-14.
  • Feldman, R. and I. Dagan. 1995. Knowledge discovery in textual databases(KDT), KDD 95, 112-117.
  • Godwin-Jones, R. 2019. Future directions in informal language learning. In M. Dressman and R. W. Sadler, eds., The Handbook of Informal Language Learning, 457-470. John Wiley & Sons. [https://doi.org/10.1002/9781119472384.ch30]
  • Green, H., K. Facer, T. Rudd, P. Dillon and P. Humphreys. 2005. Future lab: Personalisation and Digital Technologies. HAL Open Science.
  • Holmes, W., M. Bialik and C. Fadel. 2019. Artificial intelligence: Promise and implications for teaching and learning. Center for Curriculum Redesign.
  • Hong, J. Y., T. Y. Koo, J. H. Han, J. H. Park and D. S. Ma. 2024. Deriving Core Competencies for Digital Tutor Policy Operation. JOURNAL OF The Korean Association of information Education 28(1), 117-126. [https://doi.org/10.14352/jkaie.2024.28.1.117]
  • Hotho, A., A. Nürnberger and G. Paaß. 2005. A brief survey of text mining. Journal for Language Technology and Computational Linguistics 20(1), 19-62. [https://doi.org/10.21248/jlcl.20.2005.68]
  • Hubbard, P. 2017. Technologies for teaching and learning L2 listening. In C. Chapelle and S. Sauro, eds., The Handbook of Technology and Second Language Teaching and Learning, 93-106. John Wiley & Sons. [https://doi.org/10.1002/9781118914069.ch7]
  • Hwang, G. 2020. A national curriculum framework for post-COVID education. The Journal of Curriculum Studies 38(4), 83-106. [https://doi.org/10.15708/KSCS.38.4.4]
  • Im, Tami. 2022. A Study on How to Apply AI Education to K-12 (D20500001). Korea Foundation for the Advancement of Science & Creativity.
  • James, N. and V. Thériault. 2020. Adult education in times of the COVID-19 pandemic: Inequalities, changes, and resilience. Studies in the Education of Adults 52(2), 129-133. [https://doi.org/10.1080/02660830.2020.1811474]
  • Jang, S. J., S. H. Lee and J. Y. Chung. 2024. Analysis of Teacher Training Policies in the Field of Digital-Based Future Education Using a Four-Dimensional of Policy Theory. The Journal of Educational Administration 42(1), 253-282. [https://doi.org/10.22553/keas.2024.42.1.253]
  • Jeong, G. Y. 2020. A study on the learning effect of multimedia literacy education. The Journal of the Convergence on Culture Technology 6(1), 63-68.
  • Kang, M. S., H. S. Kim, H. K. Kim and Y. H. Joo. 2023. Exploring ways to strengthen artificial intelligence and digital utilization education policies for teachers. The Journal of Korean Teacher Education 40(2), 111-140.
  • Kim, N. Y. 2018. Different chat modes of a chatbot and EFL students' writing skills development. Studies in Foreign Language Education 32(1), 263-290. [https://doi.org/10.16933/sfle.2018.32.1.263]
  • Kim, J. S. 2020. Artificial intelligence literacy’s big ideas and achievement standards for primary English language learners. The Journal of Korea Elementary Education 31, 135-153.
  • Kim, K. 2019. Is Korean education properly preparing future generations for an era of change? Korean Journal of Educational Research 57(1), 221-252. [https://doi.org/10.30916/KERA.57.1.221]
  • Kim, H. S. and J. A. Park. 2023. Analysis of Research Trends in Cosmetology Education using Text Mining. Journal of the Korean Society of Cosmetology 29(3), 582-592. [https://doi.org/10.52660/JKSC.2023.29.3.582]
  • Kim, H. S., S. Jun, S. Y. Choi and S. Kim. 2020. Development and application of education program on understanding artificial intelligence and social impact. The Journal of Korean Association of Computer Education 23(2), 21-29.
  • Kim, M., J. Yeom, H. Jung and C. Lim. 2021. A review of research on artificial intelligence chatbot in education through the lens of activity theory. The Journal of Educational Information and Media 27(2), 699-721. [https://doi.org/10.15833/KAFEIAM.27.2.699]
  • Kim, S. G. and J. Kang. 2018. Analyzing the discriminative attributes of products using text mining focused on cosmetic reviews. Information Processing & Management 54(6), 938-957. [https://doi.org/10.1016/j.ipm.2018.06.003]
  • Kim, S., H. J. Cho and J. Y. Kang. 2016. The status of using text mining in academic research and analysis methods. Journal of Information Technology and Architecture 13(2), 317-329.
  • King, F. B., M. Harner and S. W. Brown. 2000. Self-regulatory behavior influences in distance learning. International Journal of Instructional Media 27(2), 147.
  • Koehler, M. J. and P. Mishra. 2009. What is technological pedagogical content knowledge? Technology and Teacher Education 9(1), 60-70.
  • Kramsch, C., D. Morgenstern and J. H. Murray. 2013. An overview of the MIT Athena language learning project. CALICO Journal 2(4), 31-34. [https://doi.org/10.1558/cj.v2i4.31-34]
  • Lau, K. N., K. H. Lee and Y. Ho. 2005. Text mining for the hotel industry. Cornell Hotel and Restaurant Administration Quarterly 46(3), 344-362. [https://doi.org/10.1177/0010880405275966]
  • Lee, H. J. 2020. A systematic review of artificial intelligence use in English learning: Focus on higher education. The Journal of Humanities and Social Science 21 11(6), 2027-2042. [https://doi.org/10.22143/HSS21.11.6.143]
  • Lee, J., J. Jung and Y. Jung. 2021. AI Educational Revolution. Siwon Books.
  • Lee, S. M. 2020. The impact of using machine translation on EFL students’ writing. Computer-Assisted Language Learning 33(3), 157-175. [https://doi.org/10.1080/09588221.2018.1553186]
  • Lee, S. and J. Kim. 2022. A research trend analysis of elementary English education using AI technology. Journal of the Korea English Education Society 21(3), 165-182.
  • Luckin, R., W. Holmes, M. Griffiths and L. B. Forcier. 2016. Intelligence Unleashed: An Argument for AI in Education. Pearson.
  • Feldman, R. and I. Dagan. 1995. Knowledge Discovery in Textual Databases (KDT). In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), 112-117. AAAI Press.
  • Ministry of Education (MoE). 2016. A Draft of the Directions and Strategies for Mid- to Long-term Education Policies in Response to the Intelligent Information Society. Ministry of Education.
  • Ministry of Science and ICT (MSICT). 2019. Announcement of the National AI Strategy. Ministry of Science and ICT.
  • Ministry of Education (MoE). 2020. Simultaneous Announcement of the Comprehensive Plan for Science-Mathematics-Information-Convergence Education. Ministry of Education.
  • Ministry of Education (MoE). 2022a. 2022 Revised national curriculum. Ministry of Education.
  • Ministry of Education (MoE). 2022b. The 2022 Comprehensive Plan for Nurturing Digital Talent. Ministry of Education.
  • Ministry of Education (MoE). 2023. Digital-based Education Innovation Plan. Ministry of Education.
  • Nam, D. 2022. Twenty years of Multimedia-Assisted Language Learning (MALL): A network visualization analysis. Multimedia-Assisted Language Learning 25(4), 170-191.
  • Oh, Y. L., J. O. Min, Y. G. Kim, D. J. Kim, Y. K. Park and B. G. Lee. 2017. A comparative analysis for the extraction of similar patent claims based on word embedding. Paper presented at the Korean Institute of Information Scientists and Engineers, 20-22.
  • Park, S. A. 2024. Critical discourse analysis of AI education policy. Korean Journal of Sociology of Education 34(2), 165-207.
  • Park, J. H. and I. Y. Yang. 2020. Utilizing an AI-based grammar checker in an EFL writing classroom. Korean Journal of Applied Linguistics 36(1), 97-120. [https://doi.org/10.17154/kjal.2020.3.36.1.97]
  • Persson, V. and J. Nouri. 2018. A systematic review of second language learning with mobile technologies. iJET 13(2), 188-210. [https://doi.org/10.3991/ijet.v13i02.8094]
  • Popping, R. 2003. Knowledge graphs and network text analysis. Social science information 42(1), 91-106. [https://doi.org/10.1177/0539018403042001798]
  • Prensky, M. 2001. Digital natives, digital immigrants part 2: Do they really think differently? On the Horizon 9(6), 1-6. [https://doi.org/10.1108/10748120110424843]
  • Punitha, S. C., P. R. J. Thangaiah and M. Punithavalli. 2014. Performance analysis of clustering using partitioning and hierarchical clustering techniques. International Journal of Database Theory and Application 7(6), 233-240. [https://doi.org/10.14257/ijdta.2014.7.6.21]
  • Ramirez, E. H., R. Brena, D. Magatti and F. Stella. 2012. Topic model Validation. Neurocomputing 76(1), 125-133. [https://doi.org/10.1016/j.neucom.2011.04.032]
  • Savage, M. and A. Barnett. 2015. Digital Literacy for Primary Teachers. Critical Publishing Ltd.
  • Shim, Y. M. 2023. Policy Challenges of Digital Tutor for Reducing the Digital Education Gap. Journal of Creative Information Culture 9(1), 33-43.
  • Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Longman Publishing Co., Inc..
  • Yeo, Y. 2020. Shaping the innovation policy in the post-COVID era: Focusing on building creative learning capabilities. Journal of Technology Innovation 28(4), 153-165. [https://doi.org/10.14386/SIME.2020.28.4.153]
  • Yun, K. and U. Maeng. 2017. A meta-analysis of the effectiveness of web-based English instruction on L2 learning. The Journal of Linguistic Science 83, 193-224. [https://doi.org/10.21296/jls.2017.12.83.193]
  • Zhang, Z. 2020. Engaging with automated writing evaluation feedback on L2 writing: Student perceptions and revisions. Assessing Writing 43, 78-91. [https://doi.org/10.1016/j.asw.2019.100439]
  • Zou, S. 2017. Designing and practice of a college English teaching platform based on artificial intelligence. Journal of Computational and Theoretical Nanoscience 14(1), 104-108. [https://doi.org/10.1166/jctn.2017.6133]