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ABSTRACT 
Choi, Sunjoo and Myung-Kwan Park. 2022. An L2 neural language model of 
adaptation. Korean Journal of English Language and Linguistics 22, 547-562.  
 
In recent years, the increasing capacities of neural language models (NLMs) have 
led to a surge in research into their representations of syntactic structures. A wide 
range of methods have been used to address the linguistic knowledge that NLMs 
acquire. In the present study, using the syntactic priming paradigm, we explore the 
extent to which the L2 LSTM NLM is susceptible to syntactic priming, the 
phenomenon where the syntactic structure of a sentence makes the same structure 
more probable in a follow-up sentence. In line with the previous work by van 
Schijndel and Linzen (2018), we provide further evidence for the issue concerned 
by showing that the L2 LM adapts to abstract syntactic properties of sentences as 
well as to lexical items. At the same time we report that the addition of a simple 
adaptation method to the L2 LSTM NLM does not always improve on the NLM’s 
predictions of human reading times, compared to its non-adaptive counterpart.  
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1. Introduction 
 
It has been noted that neural(-network) language models (NLMs) are able to represent and learn a broad range 

of linguistic phenomena (Gulordava et al. 2018, Tenney et al. 2019, Warstadt et al. 2020). However, it remains 
unknown whether these NLMs indeed encode an abstract notion of syntax in their representational space and to 
which extent they can acquire specific linguistic constructions. Many previous works have addressed these issues 
taking inspiration from psycholinguistics, particularly the syntactic priming paradigm (Bhattacharya and van 
Schijndel 2020, Fine and Jaeger 2016, Prasad et al. 2019, van Schijndel and Linzen 2018, Sinclair et al. 2021). 
The syntactic priming paradigm in question refers to a tendency of people to reuse the structural pattern that people 
have experienced when they produce sentences (Bock 1986). For example, when a sentence like The professor 
gave his student the paper is encountered, the same structure is more likely to be used in a subsequent sentence 
like The boy passed his dad a letter than the alternate structure The boy passed a letter to his dad. Evidence from 
syntactic priming provides us with an opportunity to estimate how sentences are similar to each other in humans’ 
(or NLMs) representation space. This paradigm also enables us to gain insight into how human-like the NLM 
representations are and vice versa.  

Earlier work on syntactic priming in Long Short-Term Memory (LSTM) LMs by van Schijndel and Linzen 
(2018) primed a fully trained model like LSTM with a structure by adapting it to a small number of sentences 
containing that structure. Then, they demonstrated that the addition of a simple adaptation mechanism to a NLM 
improves predictions compared to a non-adaptive model. They noted that NLMs adapt abstract syntactic structures 
as well as lexical items. Then, Prasad et al. (2019) used van Schijndel and Linzen’s (ibid.) syntactic priming 
paradigm to explore how recurrent neural network LMs represent sentences with relative clauses (RCs). Prasad et 
al. measured the change in surprisal values after adaptation when the NLMs are tested either on sentences with 
same structure or sentences with different but related structures. They argued that the representations of sentences 
with relative clause are organized in a linguistically interpretable manner. In other words, sentences with a 
particular type of RC are more similar to other sentences with the same type of RC. In so doing, they supported 
the claim that the NLMs can learn abstract structural properties of sentences. This line of analysis for NLMs based 
on previous behavioral findings indicates that the syntactic priming paradigm is a highly useful and effective 
method for gaining insights into the capacities of NLMs.  

Given the recent success in the L1 LM’s adaptation as well as the priming behaviors of humans, this research 
aims to investigate the syntactic priming patterns of the L2 LSTM LM trained on training data collected from 
English textbooks published in Korea. In other words, adopting the Gulordava model architecture, which was pre-
trained on about 90 million tokens of English Wikipedia (i.e., the L1 LSTM LM), we implemented the L2 LSTM 
LM for our experiments. Based on the L1 LM’s ability to prime abstract structural properties of sentences, we 
leverage the previous work to apply an elaborate experimental method to assess the syntactic priming behaviors 
of the L2 LSTM LM. For our experiments, we implement the L2 LSTM LM trained on the L2 corpus that Korean 
L2 English learners can potentially encounter during their English learning in middle and high-school days. Then 
we adapt the L2 LSTM LM to some syntactic constructions and compare its performance with the counterpart in 
the non-adaptive version of the model. Conducting a series of computational experiments using the L2 adapted 
LM, we can examine whether L2 adapted LM’s expectations are consistent with the target items. Our findings will 
show that the L2 adapted LM display inconsistent behaviors regarding priming effects in the subsequent 
experiments, unlike the L1 adapted LM.  

The structure of the paper is as follows. Section 2 touches on syntactic priming effects as the theoretical 
background of our experiments. Section 3 introduces van Schijndel and Linzen’s (2018) study in greater details. 
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Section 4 introduces the implementation of the L2 LSTM LM. Section 5 reports the results of the L2 adopted LM’s 
performances, concentrating on its abilities to capture priming effects. Section 6 discusses our finding. Section 7 
concludes the paper. 

 
 

2. Syntactic Priming Effects in Humans and Language Models  
 
Syntactic priming has been one of the dominant paradigms in psycholinguistics in investigating whether the 

representations of two sentences have shared structure. For example, (1) shares the structure with (2a), that is, VP 
→ V NP NP.  

 
(1) The teacher assigned the class the homework.  
(2) a. The salesperson sold the customer the product.  
   b. The salesperson sold the product to the customer.  
 
If (1) primes (2a) more consistently than it primes (2b), we can suspect that the representation of (1) is more 

similar structurally to that of (2a) than that of (2b). We assume that as a prime structure is processed, it becomes 
activated and therefore persists across utterances with a range of different syntactic structures (Bock 1986, Bock 
and Griffin 2000, Pickering and Branigan 1998, Pickering and Ferreira 2008). The rationale behind this behavior 
is that if speakers have a tendency to reuse aspects of sentence structure, then it means that such structural 
information is an integral part of the representations built during sentence processing. In tandem, semantic 
relatedness between prime and target sentences provides boosting effects on syntactic priming (Mahowald et al. 
2016).  

At the same time, the effects of syntactic priming can be cumulative. Sentences with a shared structure Sx 
become progressively easier to process when preceded by n sentences with the same structure Sx than when 
preceded by n sentences with a different structure Sy (Kaschak et al. 2011). Simply put, cumulative exposure to 
prime structure will boost priming effects. Cumulative priming allows us to study how sentences are similar to 
each other in the human or NLM representation space. It means that when participants encounter sentences with 
structure Sx, if there is a greater decrease in surprisal (i.e., unexpectedness) when they are tested on other sentences 
with Sx than when they are tested on other sentences with Sy, we can conjecture that the representations of 
sentences with Sx are more related to each other than sentences with Sy.  

van Schijndel and Linzen (2018) reported that when a RNN LM was adapted to a small number of sentences 
with a shared syntactic structure, the surprisal for new sentences with the same structure decreased. The results 
demonstrate that the NLM’s representations of sentences accommodate the test structure on the basis of prior 
experience. Recently, Sinclair et al. (2021) also investigated how priming can be used to study the nature of the 
syntactic knowledge acquired by NLMs. Conducting several experiments, they found strong priming effects when 
priming was trained with multiple sentences. The priming effects increased as the number of syntactically 
congruent prime sentences were accumulated. They also noted that when presenting multiple primes with the same 
syntactic structure, the proximity of such primes had a positive effect on priming.  

In this paper, we are to capitalize on the benefits of the cumulative priming paradigm to study the priming 
behaviors of the L2 LSTM LM and examine its ability to encode abstract structural information. In what follows, 
we review van Schijndel and Linzen’s (2018) study in greater details, as it serves as a basis for our study of the L2 
LSTM LM reported in Section 4 and 5.  
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3. Van Schijndel and Linzen (2018)  
 

3.1 Method 
 
van Schijndel and Linzen (2018) employed a simple method in adapting an NLM as follows: at the end of each 

new test sentence, the parameters of the NLM were updated based on its cross-entropy loss when predicting that 
sentence; the new weights are then used to predict the subsequent text sentence. They followed Gulordava LM 
(Gulordava et al. 2018) as baseline LM which was trained on 90 million English words from Wikipedia. Given 
this, they conducted three experiments to measure the adaptation effects. In addition, they tested the model on the 
Natural Stories Corpus (Futrell et al. 2018), which has 10 narratives with self-paced reading times from 181 native 
English speakers: fairy tales (seven texts) and documentary accounts (three texts). 

 
3.2 L1 Experiment 1: Linguistic Accuracy  
  

First, van Schijndel and Linzen measured how well the adaptive model expected upcoming words using the 
model’s perplexity1. To do so, they adapted the model to the first x sentence in either of the two types of texts such 
as documentary texts and fairy tales and then tested it on the x + 1 sentence for all x’s. As a result, this procedure 
of adaptation improved on the test perplexity of the adaptive mode, compared to the counterpart of the non-
adaptive model (86.99 vs. 141.49). 

Crucially, they adapted the model to each genre separately. If the model adapts to stylistic or syntactic patterns 
in one type of text, adaptation effects are more robust in this type of text than in the other type of text. This 
prediction is fulfilled, as shown in Table 1. The documentary texts benefited less from adaptation than the fairy 
tales. 

 
Table 1. L1 LM’s Test Perplexity 

 Documentary texts Fairy tales 
Non-adaptive surprisal 99.33 160.05 

Adaptive surprisal 73.20 86.47 
 
3.3 L1 Experiment 1: Modeling Human Expectations 

 
Additionally, they tested whether the adaptive LM matches human expectations better than the non-adaptive 

model. To probe this, they tailored the adaptive LM to each story in the Natural Stories Corpus. After each story, 
they reverted to the initial Wikipedia-trained LM and restarted adaptation on the subsequent story., This model 
highly likely resulted a conservative estimate of the benefit of adaptation compared to the model that adapts 
continuously across multiple texts from the same story, similar to how humans might do.   

They used surprisal to link a function between the NLM’s predictions and human reading times. In general, 
surprisal means how unpredictable each word is given the preceding words, as represented below.  

 

 
1 Perplexity is the most widespread currency of evaluation for neural language models. Perplexity is defined as the inverse 

of the geometric average of the probability for each word (as defined in subsection 4.1). In general, a low perplexity indicates 
that the probability distribution is good at predicting upcoming words. Better language models will achieve lower perplexity 
scores or higher probability values on test sentences. 
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They fitted the self-paced reading times in the Natural Stories Corpus with linear mixed effects models. In so 
doing, they reported that non-adaptive surprisal was a significant predictor of reading times (p < 0.001) when the 
model only included other baseline factors such as sentence position and word length, as shown in the top panel 
of Table 1. Adaptive surprisal was a significant predictor of reading times (p < 0.001) over non-adaptive surprisal 
and all baseline factors, as shown in the bottom panel of Table 2. Importantly, non-adaptive surprisal was no longer 
a significant predictor of reading times once adaptive surprisal was included. The results showed that the 
predictions of the adaptive model subsume the predictions of the non-adaptive one. 

 
Table 2. Fixed Effect Regression Coefficients from Fitting Self-paced Reading Times  

(taken from van Schijndel and Linzen 2018: 2) 

 
 
3.4 L1 Experiment 2: Reduced Relative Clauses  

 
The foregoing experiment demonstrated that LM adaptation improves the ability to model the human 

expectations reflected in the self-paced reading time corpus. Furthermore, they further addressed the following 
two more questions: how much of improvement is due to the adaptation of the model’s syntactic representations 
(Bacchiani et al. 2006, Dubey et al. 2006) and how much is simply due to the model assigning a higher probability 
to the words recently encountered (Kuhn and de Mori 1990, Church 2000)? They attempted to answer these 
questions using the two syntactic phenomena: reduced relative clauses and dative alternation in English. We first 
review the experiment concentrating on reduced relative clauses in English, as in (3).  

 
(3) The grad students cheated during their exams left to go home.  
 
The word ‘cheated’ in (3) is initially ambiguous between a main verb interpretation and a reduced relative clause 

interpretation. When the word ‘left’ is encountered, this ambiguity is resolved in favor of the reduced relative 
interpretation. Reduced relatives are an infrequent construction, and this condition makes the disambiguating word 
‘left’ unexpected, So, readers read the sentence in (3) more slowly than they read the sentence in (4), where the words 
‘who were’ signal early on that ‘cheated’ only is taken unambiguously as a passive verb inside the relative clause: 

 
(4) The grad students who were cheated during their exams left to go home.  
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Fine and Jaeger (2016) reported that the cost of disambiguation in favor of the reduced relative interpretation 
decreased gradually with more exposures to reduced relative clauses. With more experiences of reduced relative 
clauses, readers can come to expect such clauses. Given this thesis, van Schijndel and Linzen (2018) adapted the 
model independently to random orderings of the critical and filler stimuli used in Experiment 3 of Fine and Jaeger 
(ibid.). Following them, van Schijndel and Linzen also used surprisal as a proxy for reading times and took the 
mean surprisal over three words in each ambiguous sentence: the disambiguating word and the following two 
words (e.g., ‘left to go’ in example (3) and (4)). To estimate the magnitude of the syntactic disambiguation penalty 
while also controlling for lexical content, they subtracted this quantity from the mean surprisal over the exact same 
words in the paired unambiguous sentence in (4).  

To compare with the findings reported by Fine and Jaeger (2016), van Schijndel and Linzen (2018) replicated 
Fine and Jaeger’s method of plotting reading times as follows: they fitted a linear model of the mean surprisal of 
each disambiguating region with the number of trials that the model had been exposed to in the experiment at hand 
to account for a general trend of subjects/NLM speeding up over the course of the experiment. Then they plotted 
the mean residual model surprisal that was left in the diambiguating region in both the ambiguous and 
unambiguous conditions, as the experiment progressed. Fine and Jaeger’s results are illustrated in the top panel of 
Figure 1 and van Schijndel and Linzen’s results in the bottom panel of Figure 1.  
 

 

 
 

Figure 1. Mean Order-corrected Surprisal over the Disambiguating Region of the Critical Item 
(taken from van Schijndel and Linzen 2018: 3) 

 
The pattern of van Schijndel and Linzen’s results are identical to the human results reported by Find and Jaeger. 

Like humans, the model showed an initially large adaptation effect and a more gradual adaptation effect as the 
experiment progressed. Both humans and the NLM continued to adapt all the critical items more robustly over the 
course than just at the beginning phrase of the experiment. Besides, the model’s behaviors to unambiguous items 
did not change significantly throughout the experiment (p = .91).  
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3.5 L1 Experiment 3: Dative Alternations 
 

In general, English has two roughly equivalent ways of expressing a transfer event: 
 

(5) a. Prepositional Object (PO):  
The man gave a ring to his girlfriend. 

     b. Double Object (DO):  
The man gave his girlfriend a ring. 

 
It is widely proposed that a recent exposure to one of these variants increases the probability of producing that 

variant (Bock 1986, Kaschak et al. 2006). To examine the LSTM LM’s performance on the dative shift, van 
Schijdel and Linzen (2018) prepared 200 pairs of dative sentences, as exemplified in (5). They shuffled 100 DO 
sentences into 1000 filler sentences sampled from the Wikitext-2 training corpus (Merity et al. 2016). They then 
adapted the model to these 1100 sentences.  

They froze the weights of the adapted model and tested its predictions for the two types of sentences. They also 
used the PO counterparts of the DO sentences in the adaptation set, which shared the vocabulary of the adaptation 
set but differed in syntax. Furthermore, they added 100 new DO sentences, which shared syntax but not content 
words with the adaptation set.  

In addition, they explored the effect of learning rate in regard to LM adaptation. During adaptation, the model 
conducts a single parameter update after each sentence and does not train itself until it converges with a gradual 
reduction of learning rate, as would normally be the case during LM training. Consequently, the learning rate 
parameter decides the amount of adaptation that the model can undertake after each sentence2. This is why the 
optimal learning rate can vary from lexical adaptation to syntactic adaptation. Given this, the experiment 
manipulated learning rate on a logarithmic scale between 0.002 and 200. The results are illustrated in Figure 2.  

As shown in Figure 2, the model successfully adapted to the DO construction as well as to the vocabulary of the 
adaptation sentences3. This behavior applied to all of the learning rates but for the learning rate of 200, which 
resulted in enormous perplexity in both sentence types. Both lexical and syntactic adaptation were greatly 
improved when the learning rate was around 2. 
 

 
Figure 2. The Results of DO Adapted Model (taken from van Schijndel Linzen 2018: 4) 

 
2 If the learning rate is too low, adaptation will not have any effect; if it is too high, the model will overfit after each update 

and not generalize properly. 
3  For each bar graph, the left bar indicates the shared vocab sentences, while the right bar indicates the shared syntax 

sentences. This manipulation applies to Figure 3, Figure 5, and Figure 6. 
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Comparing learning rates of 2 and 20, syntactic adaptation was penalized at higher learning rates more severely 
than lexical adaptation. van Schijndel and Linzen analyzed these observed patterns in following ways: the DO 
adapting model can easily recognize the relevant vocabulary items, but syntax is not overtly recognizable. 
Syntactic properties must be inferred from multiple sentences of the similar syntax. As the learning made a process, 
a generalization was impeded by overfitting at higher learning rates.  

Figure 3 reports the results of the PO adapting experiment. The patterns are similar to the results of the DO 
adapting experiment. The PO adapting model initially assigns a lower probability to the DO construction, 
compared with the syntactic adaptation test set (i.e., PO sentences). However, as the experiment made a progress, 
lexical adaptation was adequate to overcome this syntactic pre-training bias at the learning rate of 2 (e.g., the 
optimal learning rate).  
 

 
Figure 3. The Results of PO Adapted Model (taken from van Schijndel Linzen 2018: 8) 

 
In short, van Schijndel and Linzen (2018) came up with a simple way of continuously adapting a neural LM 

based on the syntactic priming paradigm. Conducting experiments with controlled materials, they found that the 
LM adapts to both specific vocabulary items and abstract syntactic constructions.  

Previous works including Schijdel and Linzen (2018) revealed that NLMs as well as humans can successfully 
adapt specific syntactic structures and assign a higher probability to recently learned structures. Based on the 
human and L1 NLM behaviors, we now start to examine how the L2 LSTM LM is sensitive to the syntactic priming 
paradigm, compared to its L1 counterpart. To investigate this, based on the pre-existing model, we implement the 
L2 LSTM model trained on the L2 corpus of English textbooks published in Korea. Applying the cumulative 
priming method, we aim to provide insight into the L2 adapted LM’s representations of sentences containing 
reduced relative clauses or dative alternations in English. In the same fashion as Schijdel and Linzen (ibid.), we 
also adapt the L2 model to fairy tales and documentary genre from the Natural Stories Corpus (Futrell et al. 2018) 
to see how well the L2 adapted model expects upcoming words. In so doing, we explore what factors influence 
the strength of the priming effect for the L2 adapted LM. We now introduce how our experiments are designed to 
carry out the same tasks that van Schijndel and Linzen (2018) conducted. 
 
 
4. L2 LSTM Language Model and Training Corpus  

 
The model known as the Gulordava LSTM LM was built in the previous study to learn the English subject-verb 

number agreement task. This is the pre-existing LSTM LM trained on an L1 corpus of English sentences. In other 
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words, it was pre-trained on 90 million tokens of English Wikipedia (Gulordava et al. 2018). Adopting the 
Gulordava model architecture, we implemented the L2 LSTM LM for our experiments. The implementation of the 
L2 LSTM language model was achieved on the training datasets collected from the EBS-CSAT English Prep 

Books published in 2016∼2018 as well as from the English textbooks for Korean English L2ers based on the 

English 11 middle-school and L2 high-school textbooks published in Korea in 2001~2002 and on the English 19 
middle-school and 12 high-school textbooks published in Korea in 2009~2010 (Choi and Park 2022a, Choi and 
Park 2022b, Choi et al. 2021, Kim 2019). In doing so, we gathered 7.9 million tokens from English textbooks for 
Korean L2 learners of English4. We also developed a data augmentation algorithm based on the textbook corpus 
to augment the training tokens to an additional dataset of 5.1 million tokens. This strategy allowed us to increase 
the amount of training data. In total, we collected a dataset of 13 million tokens for training the L2 LSTM LM. 
Using the L2 corpus, we trained the L2 LSTM, which is the baseline model. Following adaptation method 
mentioned in section 3.1, we further created three different L2 adapted LMs to conduct three different experiments. 
We will outline these adapted models in detail in the following subsections. 

 
4.1 Perplexity for LSTM LM  

 
As mentioned in Section 3, perplexity is the assessment metric to determine how good a language model is. 

Simply speaking, if the model has a perplexity of 50, it indicates that whenever the model is trying to predict the 
upcoming word, the model is as confused as if it has to pick between 50 words. In general, perplexity is defined 
as follows:  

 
 

The following Table 3 shows the perplexity of the two LSTM LMs at issue on the valid set. The L2 LSTM LM 
registers higher perplexity, compared to its L1 counterpart LSTM.  

 
Table 3. The Perplexity of the Two LSTM LMs 

LSTM LM The Gulordava Model (L1) L2 
ppl 52.1 87.26 

 
 
5. Results  

 
5.1 L2 Experiment 1: Linguistic Accuracy  

 
We begin by testing how well the L2 adapted model expects a next word. As its L1 counterpart NLM did, we 

report the L2 adapted model’s perplexity. We adapted the L2 LSTM LM to the first x sentence and then tested it 
on the x + 1 sentence for all x’s. We tested the L2 adapted model on the Natural Stories Corpus as mentioned in 

 
4  As mentioned above, we trained the L2 LSTM language model by employing 13 million tokens that Korean English 

learners may encounter in their English learning. The L2 LSTM LM was adopted for its previous success in learning a range 
of different syntactic structures such as filler-gap dependencies (Kim, 2019), linguistic anomalies (Choi et al., 2021), the dative 
alternation (Choi and Park, 2022a), relative clauses (Choi and Park, 2022b).  
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Section 3.1. We used the same test corpus to directly compare the adaptation effects5.   
As a result, the L2 adapted model did not improve test perplexity, compared to the L2 non-adapted model 

(986.59 vs. 979.19). Rather, the non-adaptive model registered slightly less perplexity than its adapted counterpart. 
Next, we adapted the L2 LSTM LM to each genre separately. If the L2 adapted model tracks syntactic or stylistic 

patterns in one genre, we expect the adaptation effect to be more positive in the same type of genre. However, this 
prediction was achieved only in the documentary texts, but not in the fairy tales, as shown in Table 4. In other words, 
only the documentary texts displayed an improvement from adaptation. We interpret the results to show that text-
specific adaptation was not always helpful even when the testing genre was similar to the training genre. Note that 
the L2 NLM was mainly trained on the textbooks for Korean L2 English learners. We assume that the aspects of the 
texts in the L2 corpus we used for training the L2 NLM may have affected the adaptation of fairy tales. 
 

Table 4. The L2 LM’s Test Perplexity  
 Documentary texts Fairy tales 

Non-adaptive perplexity 1815.22 765.79 
Adaptive perplexity 785.15 852.51 

 
5.2 L2 Experiment 1: Modeling Human Expectations  
 

Next, we tested whether the L2 adapted LM matches human expectations. We also tested the L2 NLM on the 
Natural Stories Corpus, which has 10 narratives with self-paced reading times from 181 native English speakers 
(Futrell et al., 2018). Given the corpus, we adapted the L2 LM to each story separately in the way that each reader 
saw the stories in a different order. After each story, we reverted to the initial Wikipedia-trained LM and restarted 
adaptation on the next story. In order to capture the relation between the L2 NLM’s predictions and human reading 
times, we also used surprisal. We fitted the self-paced reading times in the Natural Stories Corpus with linear 
mixed effects models, a generalization of linear regression.  

As with the L1 counterpart, non-adaptive surprisal with the L2 NLM was a significant predictor of reading times 
(p < 0.0001) when the model only included other baseline factors, as shown in the top panel of Table 5. Adaptive 
surprisal was a marginally significant predictor of reading times (p = 0.053) over non-adaptive surprisal and all 
baseline factors, as shown in the bottom panel of Table 5. The thing to note is that unlike the L1 counterpart, non-
adaptive surprisal was a continuously significant predictor of reading times even when adaptive surprisal was 
included (p < 0.0001). 

 
Table 5. Fixed Effect Regression Coefficients from Fitting Self-paced Reading Times 

Estimate      SE          t-value      p-value 
Without Adaptive Surprisal 

Sentence position 0.39 0.48 0.80 0.212 
Word length 10.65 0.96 11.08 < .0001 

Non-adaptive surprisal 12.78 0.82 15.41 < .0001 
With Adaptive Surprisal 

Sentence position 0.59 0.50 1.17 0.121 
Word length 10.83 0.96 11.20 < .0001 

Non-adaptive surprisal 13.07 0.84 15.40 < .0001 
Adaptive surprisal -0.63 0.39 -1.61 0.053 

 
5 In this study, we do not distinguish between priming and adaptation effects. 
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The results reported in Table 5 show that both the adaptive and the L2 non-adaptive LSTM LM exhibited 
significant priming effects on the text-specific experiment. Simply speaking, the predictions of the L2 adaptive 
model were similar to those of the non-adaptive model. Contrary to our expectation, adaptive surprisal was not 
superior to non-adaptive surprisal in modeling reading times. 
 
5.3 L2 Experiment 2: Reduced Relative Clauses  

 
The second experiment adapted the L2 model independently to random orderings of the critical (e.g., the reduced 

relative construction) and filler items employed in Experiment 3 of Fine and Jaeger (2016). One sample pair of the 
critical items are in Table 6 below. To replicate Fine and Jaeger’s experiment, we gathered 40 critical items and 
80 fillers into 16 lists (item orders). Four randomized orderings had the same items in each position as the first 
four but with opposite conditions for each critical item, and each of those eight total lists was presented in reverse 
order. Ambiguity was counterbalanced across experimental lists. Each stimulus list was presented in the exact 
same pseudorandom order. We used surprisal as a proxy for reading times and measured the mean surprisal over 
three words in each ambiguous sentence (e.g., caught on right as in Table 6).  

 
Table 6. Examples of Ambiguous and Disambiguous Pair 

Structure Example 
Ambiguous The rookie technician taught the computer program caught on right away.  

Disambiguous  The rookie technician who was taught the computer program caught on right away.  
 
We directly compared the results from the L2 NLM with those reported by van Schijndel and Linzen. To see 

this, we followed their method of plotting reading times. As mentioned in the previous section, we fitted a linear 
model of the mean surprisal of each disambiguating region with the number of trials that the model had seen in 
the experiment at hand to account for a general trend of subjects/NLM speeding up over the course of the 
experiment. Then, we plotted the mean residual model surprisal that was left in the disambiguating region in both 
the ambiguous and unambiguous region conditions. We found that the pattern of the L2 adapted model results 
does not match those of both human and L1 adapted model results, as shown in Figure 4.  

 

 
Figure 4. Mean Order-corrected Model Surprisal for the L2 Adaptive Model 
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The results from this experiment show that the L2 adapted model failed to yield positive adaptation effects. As 
the experiment progressed, the L2 model’s responses to ambiguous items changed continuously but the adaptation 
effect was not statistically significant (p = 0.43). However, the mean surprisal values for the ambiguous items were 
marginally significant, relative to those for the disambiguous items (p = 0.079). Although the L2 adapted model 
exhibited a low adaptation effect, it distinguished the ambiguous and unambiguous conditions consistently 
throughout the experiment. In other words, the L2 NLM could encode the abstract structural information of 
reduced relative clauses quite reliably. We can infer that the sentences that belong to a linguistically interpretable 
class (e.g., sentences that match in ambiguity) were recognized similarly to each other in the L2 LM’s 
representation space (Prasad et al., 2018). This is in line with the finding that the L2 adapted LM is capable of 
tracking abstract properties of sentences (Choi and Park 2022a, Choi and Park 2022b). 

 
5.4 L2 Experiment 3: Dative Alternations   

 
In the third experiment, we concentrated on the dative alternation. This phenomenon allows for the same content 

to be expressed by two different syntactic structures. The dative alternation includes ditransitive verbs whose 
complement can be expressed either by a double object (DO) structure or a prepositional object (PO) structure. 
We collected a number of DO and PO sentences, from which one sample pair is given in Table 7. All the 
experimental (i.e., critical and filler) items were taken from van Schijndel and Linzen (2018).  
 

Table 7. Examples of Prime and Target Sentences 
Structure Example  

Prepositional object (PO) A man wrote a letter to a musician.  
Double object (DO) A man wrote a musician a letter. 

 
As mentioned in section 3, for adaptation, 1,000 filler sentences were randomly drawn from the L2 training 

corpus, and 200 pairs of DO and PO sentences were generated. Then, the 200 pairs of DO and PO sentences were 
divided evenly into two sets. For each set, one of the DO and PO sentences was shuffled into the 1,000 filler 
sentences for adaptation, and the other was used to evaluate the L2 adapted model's ability to reproduce their 
variants.  

In addition, we also examined the effect of learning rate on adaptation. Learning rate usually decides the amount 
of adaptation that the model can undertake after each sentence. If learning rate is too low, it is hard to find the 
adaptation effect. On the other hands, if learning rate is too high, the model may overfit after each update and fail 
to generalize. The optimal learning rate varies depending on the degree of lexical and syntactic adaptation.  

Like van Schijndel and Linzen (2018), we predicted that the L2 NLM could adapt to DO/PO alternation as well 
as lexical items of the adaptation sentences. The prediction was fulfilled. As in Figure 56, the L2 LM adapted well 
both to DO constructions and the lexical items of the adaptation sentences. These behaviors were found in all of 
the learning rates but for 20 and 200, which resulted in billions of perplexity. Both syntactic and lexical adaptation 
were most successful when the learning rate was around 0.2. 

 

 
6 The results reported in Figure 5 and Figure 6 are taken from Choi and Park (2022a), who studied the same issue in this sub-

section only. They employed the same L2 LSTM language model mentioned in Section 4 for their experiment.  
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Figure 5. The Results of the L2 DO Adapting Model 

 
Let us compare the learning rates from 0.2 to 20. Syntactic adaptation was penalized at higher learning rates 

more than lexical adaptation. Recall that this pattern was also discovered in the DO adapting L1 model, especially 
when comparing the learning rate of 2 with that of 20. As in van Schijndel and Linzen (2018), we also noted that 
tracking abstract lexical and syntactic properties from multiple similar sentences is impeded by overfitting at 
higher learning rates.  

Now we report the results of the PO adaptation variants. In this case, the adaptation set contained PO sentences 
instead of DO sentences. Figure 6 illustrates that their results were similar to those of the DO adaptation set. Both 
syntactic and lexical adaptation were most successful when the learning rate was around 0.2, as found in the DO 
adapting model. 

 

 
Figure 6. The Results of the L2 PO Adapting Model 

 
At the beginning of this experiment, the PO adapting L2 model assigned a lower probability to the DO 

construction. This behavior was maintained when the learning rate was around 0.02. However, at the optimal 
learning rate (e.g., 0.2), lexical adaptation with DO sentences had to overcome this syntactic pre-training bias, just 
like the L1 counterpart. Interestingly, what is also worth mentioning is that the learning rate of 20 resulted in 
billions of perplexity again, especially with the DO test set. This peculiar pattern was also observed in the DO 
adapting L2 model, as illustrated in Figure 5.  

Taken together, the results of the DO & PO adapting L2 LM are similar to those of the DO & PO adapting L1 LM, 
reported in van Schijndel and Linzen (2018). The L2 LM appropriately adapted lexical items as well as abstract 
syntactic structures. The DO & PO adapting L2 LM exhibited positive priming effects with the English dative 
alternation construction, compared with reduced relative clauses. Furthermore, we found that learning rate crucially 
affects both lexical and syntactic adaptation. L1 and L2 adapted language models were similar regarding the effect 
of learning rate on adaption. However, the optimal learning rate was different: the DO & PO adapting L1 model is 
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around 2, while the DO & PO adapting L2model is around 0.2. This means that the L2 adapted LM assigned greater 
probabilities to the items that in fact occurred in prior contexts, than the L1 adapted language model did.  
 
 
6. Discussion 

 
In this study, we tried to answer the following two research questions: (1) Are the L2 adapted language model 

susceptible to syntactic priming like its L1 counterpart? (2) Which environmental factors influence the L2 priming 
effect acquired by the L2 adaptive model? To examine these two issues, we replicated the previous experiments 
in van Schijndel and Linzen (2018), running a series of computational experiments on several different types of 
syntactic adaptation, and compared the results from the L2 and the L1 adapted language models.  

First, the current study did not find a consistent improvement on word prediction accuracy with the L2 adapted 
LM. We reported that only the documentary texts exhibited an improvement from adaptation. However, text 
specific adaptation was not helpful with the fairy tales. It did not positively impact on priming in the case of the 
fairy tales, even when the testing genre was similar to the training genre. We then examined whether the L2 
adaptive LM correlated with human expectations more significantly than its non-adaptive counterpart. Both the 
L2 adaptive and the L2 non-adaptive models turned out to be a significant predictor of reading times. The result 
indicates that the predictions of the adaptive model were not differentiated from those of the non-adaptive model. 
These two L2 LMs played a role in determining its probability in line with human expectations.  

In the second experiment, we adapted the L2 NLM independently to random orderings of the sentences 
containing reduced relative clauses. Using surprisal, we measured the mean value over the three words in each 
ambiguous sentence. We directly compared the adaptation effects in the L2 NLM and its L1 LM counterpart. The 
L2 adaptive model did not record a significant adaptation effect. As the experiment continued, the L2 model’s 
behavior to ambiguous items changed constantly, but the adaptation effect was not statistically significant. Still, 
the average surprisal values of the ambiguous items were marginally significant than those of the disambiguous 
items. The observed behavior of the L2 NLM indicates that it has an ability to track abstract linguistic properties 
quite reliably. We have compelling evidence that the model encodes information about the ambiguity features of 
reduced relative clauses.  

In the third experiment, the results for the DO & PO adapting L2 LM were similar to those of the DO & PO 
adapting L1 LM in van Schijndel and Linzen (2018). The L2 adapted LM registered priming effects with the 
English dative alternation construction. Furthermore, we noted that learning rate influenced both lexical and 
syntactic adaptation. L1 and L2 adapted LMs were similar concerning the general effect of learning rate on 
adaption, but they differed in the optimal learning rate.  

Overall, our study has revealed novel details about the nature of the representations learned by the L2 NLM 
about syntactic aspects of sentences. The findings from the study of the L2 NLM have demonstrated the usefulness 
of the priming paradigm for investigating the research questions raised above. We have particularly noted that a 
quite high degree of abstract syntactic structure is being represented by the L2 NLM. Even though we have failed 
to discover adaptation effects among all of the three experiments, we have shown the benefits of repurposing the 
priming paradigm to compare the degrees of the knowledge acquired by the two different L1 and L2 NLMs. It is 
to be underscored that the amount of training data for an NLM may have given rise to quantitatively different 
effects between L1 and L2 NLMs. In addition, as for humans, priming effects for an NLM can be affected by 
various aspects of data other than its amount. In this sense, different environmental factors may influence an 
NLM’s performance in priming.  
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7. Conclusion 
 
In this research, we have probed the syntactic priming behaviors of the L2 LSTM LM. We have evaluated how 

well the L2 LSTM LM expects a greater probability of syntactic structures that it has potentially learned. We have 
provided further evidence that the L2 adaptive LM is able to track abstract linguistic properties of critical items in 
line with previous works. In addition, based on the materials that teased apart lexical content from syntax, we have 
demonstrated that the L2 LSTM LM can adapt both lexical and syntactic predictions. Even though the L2 adaptive 
model exhibited low adaptation effects in the text-specific experiment and reduced relative constructions, we 
concurred with the claim that the cumulative priming method is a helpful and effective way of investigating the 
nature of the internal representations of specific syntactic structures. Following the priming method, we have 
examined the correlation between surprisal values derived from the L2 NLM and human reading times.  

Before concluding, we mention some preliminary remarks on the importance of training dataset size in 
investigating the nature of NLMs. Since NLMs are data-driven, we need to investigate deeply how the amount of 
training data influences the performance of NLMs like the LSTM LM. By comparing them we can contribute to a 
better understanding of the differences between them, like those between the L1 and the L2 LSTM LMs reported 
in this paper. Though we have reported a preliminary study of them here, a more thorough examination of them is 
left for future study. 
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