최근 10년간(2014~2023) ≪영어학≫ 연구 동향 분석: 계량정보학적 접근
© 2024 KASELL All rights reserved
This is an open-access article distributed under the terms of the Creative Commons License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Using text mining methods, this study examines research trends in papers published in Korea Journal of English Language and Linguistics over the past decade (2014-2023). A total of 456 abstracts were collected and analyzed using frequency analysis, Phi coefficient, TF-IDF, and LDA topic modeling. The findings are as follows. First, applied linguistics and English education are dominant fields in the journal, likely reflecting the status of English as a second or foreign language in South Korea. Second, within applied linguistics and English education, writing and vocabulary emerge as major research themes, particularly academic writing in the English for Academic Purposes (EAP) context. Third, with general linguistics, syntax exhibits significant research output both in quantity and specificity of topics. Fourth, emerging research areas include corpus linguistics, psycholinguistics, computational linguistics, and sociolinguistics. Fifth, research topics display diversity and evolution, driven by the discovery of new English-related phenomena. In light of these findings, this study underscores the ongoing necessity for research in English linguistics and language, emphasizing the importance of staying attuned to social changes and disciplinary identities
Keywords:
research trends, text mining, TF-IDF, topic modeling, phi coefficient, English linguistics, English language, disciplinary identity, informetricsAcknowledgments
This paper was supported by Konkuk University in 2023
References
- 권민재(Kwon, M.). 2024. 언어 네트워크 분석을 활용한 독어학 연구 동향 분석 - 최근 25년간 발표된 독어학 관련 논문을 중심으로(Analyse der forschungstendenzen in der germanistischen linguistik in Korea anhand der sprachlichen netzwerkanalyse). ≪독일언어문학≫(Zeitschrift für Deutsche Sprache und Literatur) 103, 1-26.
- 권연진(Kwon, Y.). 2022. 정치담론 상에서 코로나19 은유의 개념화 양상(The conceptualization of Covid-19 metaphor in political discourse). ≪영어학≫(Korean Journal of English Language and Linguistics) 22, 871-890.
- 권은영(Kwon, E.). 2020. 파이썬과 텍스트 마이닝을 활용한 ESP 연구 동향 분석. ≪외국어교육≫(Foreign Languages Education) 27-2, 111-139. [https://doi.org/10.15334/FLE.2020.27.2.111]
- 권은영(Kwon, E.). 2021. AI 활용 영어 교수 및 학습 연구 동향(Research trends in AI-based English language teaching and learning). ≪영어학≫(Korean Journal of English Language and Linguistics) 21, 1313-1337.
- 김미경(Kim, M.). 2023. ChatGPT와 Google Bard를 활용한 Critical-PBLL 중심 대학영어 개발과 적용(Towards a Critical-PBLL utilizing ChatGPT and google bard within college English education). ≪영어학≫(Korean Journal of English Language and Linguistics) 23, 741-767. [https://doi.org/10.15738/kjell.23..202309.741]
- 남재우, 김영준(Nam, J. and Y. Kim). 2023. 텍스트 마이닝을 이용한 인공지능 활용 신약 개발 연구 동향 분석(Analysis of research trends in new drug development with artificial intelligence using text mining). ≪생명과학회지≫(Korean Journal of Life Science) 33-8, 663-679.
- 박상희, 전지현(Park, S. and J. Jeon). 2019. 한국과 미국 직장인의 영어 요청 이메일 비교 연구(A study on English request emails by Korean and American office professionals). ≪영어학≫(Korean Journal of English Language and Linguistics) 19-1, 142-164. [https://doi.org/10.15738/kjell.19.1.201903.142]
- 박신애(Park. S). 2022. 텍스트 마이닝을 활용한 영어 음운의 국내 연구 동향 분석(An analysis of domestic study trends in English phonology using text mining). ≪음성음운형태론연구≫(Studies in Phonetics, Phonology, and Morphology) 28-1, 83-110.
- 박은희(Park. E.). 2021a. LDA 토픽 모델링을 활용한 대학 교양영어 연구동향 분석(Research trends in college English education in Korea -A topic analysis using LDA topic modeling). ≪교양교육연구≫(Korean Journal of General Education) 15-5, 169-183. [https://doi.org/10.46392/kjge.2021.15.5.169]
- 박은희(Park. E.). 2021b. 텍스트 마이닝을 활용한 영어 쓰기교육 연구동향 분석(Topic analysis in EFL writing in Korea using text mining). ≪응용언어학≫(Korean Journal of Applied Linguistics) 37-3, 95-122. [https://doi.org/10.17154/kjal.2021.9.37.3.95]
- 성민창, 김기택(Seong, M. and K. Kim). 2021. 우리나라 초등영어교육에 적합한 팝송 탐색: 언어 수준과 내용 분석(Pop songs for primary English education in South Korea: An analysis of language level and content). ≪영어학≫(Korean Journal of English Language and Linguistics) 21, 450-471.
- 신동일(Sin, D.). 2018. 글로벌 인재와 영어능력에 관한 담론적 실천과 신자유주의 주체성의 이해(Understanding discoursive practice and neoliberal subjectivities of global talents and their English language competence). ≪영어학≫(Korean Journal of English Language and Linguistics) 18-3, 349-380. [https://doi.org/10.15738/kjell.18.3.201809.349]
- 신승훈(Sin, S.). 2014. 치경비음을 선행하는 치경폐쇄음의 발화양상: 벅아이 코퍼스의 미국영어를 중심으로(Realizations of alveolar stops before alveolar nasals in the Buckeye corpus of conversational speech). ≪영어학≫(Korean Journal of English Language and Linguistics) 14-2, 279-300. [https://doi.org/10.15738/kjell.14.2.201406.279]
- 신유선·김양희(Sin, Y. and Y. Kim). 2020. 키워드 네트워크 분석을 활용한 영어교육관련 연구 동향 분석: 2000-2019년도까지 「영어교육연구」에 게재된 논문을 중심으로(Research and trends in English language education from 1990 to 2019: A keyword analysis of published articles in English Language Teaching). ≪영어교육연구≫(English Language Education) 32-4, 205-224.
- 심영숙(Sim. Y.). 2020. 세계영어에 관한 국내 연구 동향 분석(Trend analysis of world Englishes research published in Korean domestic journals). ≪응용언어학≫(Korean Journal of Applied Linguistics) 36-3, 99-125.
- 양인영(Yang, I.). 2022. 고등학교 영어 기초학력 미달에 영향을 미치는 학생 특성 요인: COVID-19 전후 비교(Effect of student characteristics on the high school students’ below-basic achievement level in English: Focusing on the changes after COVID-19 outbreak). ≪영어학≫(Korean Journal of English Language and Linguistics) 22, 208-228.
- 원용국·김영우(Won, Y. and Y. Kim). 2021. 토픽 모델링을 활용한 한국 영어교육 학술지에 나타난 연구동향 분석(Analysis of research trends in Korean English education journals using topic modeling). ≪한국콘텐츠학회논문지≫(The Journal of the Korea Contents Association) 21-4, 50-59
- 이은주(Lee. E.). 2008. 영어교육과 응용언어학 분야에서 수행된 코퍼스 기반 연구의 분석(An analysis of corpus-based research on TEFL and applied linguistics). ≪영어교육≫(English Teaching) 63-2, 283-306. [https://doi.org/10.15858/engtea.63.2.200806.283]
- 조선, 신동일(Cho, S. and D. Sin). 2014. 전화영어에 나타난 대화의 특성 연구: 상호작용 담화모형의 관점에서(Investigating characteristics of telephone English conversation: from the analytic framework of an interactional discourse model). ≪영어학≫(Korean Journal of English Language and Linguistics) 14-4, 603-631. [https://doi.org/10.15738/kjell.14.4.201412.603]
- 주경진, 이경랑(Ju. K. and K. Lee). 2022. 포스트코로나 시대 대학생들의 영어 의사소통역량 함양과 자기주도적 학습 능력 향상 방안 모색 연구(An exploratory study to improve English communicative competencies and self-directed learning of university students in the post COVID-19 era). ≪영어학≫(Korean Journal of English Language and Linguistics) 22, 1220-1235.
- 차경환·김영규(Cha, K. and Y, Kim). 2010. 한국응용언어학회 학회지 게재 논문(1983-2008)에 나타난 연구 경향 분석(A trend analysis of research published in the journal of the applied linguistics association of Korea (1983-2008)). ≪응용언어학≫(Korean Journal of Applied Linguistics) 26-1, 91-110.
- 황보영식(Hwang, B.). 2017. 미국영어에서 [u]-약화와 [w]-삽입([u]-reduction and [w]-epenthesis in American English). ≪영어학≫(Korean Journal of English Language and Linguistics) 17-2, 351-378. [https://doi.org/10.15738/kjell.17.2.201706.351]
- Aizawa, A. 2003. An information-theoretic perspective of TF-IDF measures. Information Processing & Management 39(1), 45-65. [https://doi.org/10.1016/S0306-4573(02)00021-3]
- Akoglu, H. 2018. User's guide to correlation coefficients. Turkish Journal of Emergency Medicine 18(3), 91-93. [https://doi.org/10.1016/j.tjem.2018.08.001]
- Anne Kao and R. P. Stephen. 2007. Natural Language Processing and Text Mining. London: Springer-Verlag.
- Arun, R., S. Suresh, C. E. V. Madhavan and M. N. Murty. 2010. On finding the natural number of topics with latent dirichlet allocation: Some observations. Lecture Notes in Artificial Intelligence 6118, 391-402. [https://doi.org/10.1007/978-3-642-13657-3_43]
- Aurora, P., B. Rafael and R. José. 2007. Topic discovery based on text mining techniques. Information Processing & Management 43(3), 752-768. [https://doi.org/10.1016/j.ipm.2006.06.001]
- Blei, D., L. Carin and D. Dunson. 2010. Probabilistic topic models: A focus on graphical model design and applications to document and image analysis. IEEE Signal Processing Magazine 27, 55-65. [https://doi.org/10.1109/MSP.2010.938079]
- Bulbul Gupta, M. Tabish, S. S. Sohail and D. Ø. Madsen. 2023 ChatGPT: A brief narrative review. Cogent Business & Management 10(3). [https://doi.org/10.1080/23311975.2023.2275851]
- Cao, J., T. Xia, J. Li, Y. Zhang and S. Tang. 2009. Density-based method for adaptive LDA model selection. Neurocomputing 72, 1775-1781. [https://doi.org/10.1016/j.neucom.2008.06.011]
- Chin, H., G. Lima, M. Shin, A. Zhunis, C. Cha, J. Choi and M. Cha. 2023. User-chatbot conversations during the COVID-19 Pandemic: Study based on topic modeling and sentiment analysis. Journal of Medical Internet Research 25, e40922. [https://doi.org/10.2196/40922]
- Cho, S. 2019. Does tutor feedback make a difference? Focusing on EFL Korean student writing. Korean Journal of English Language and Linguistics 19(3), 432-451. [https://doi.org/10.15738/kjell.19.3.201909.432]
- Cho, S., D. Kim and C. Baek. 2020. A comparison of a novice writing tutor with an experienced tutor: Focusing on changes in their interactions with tutees. Korean Journal of English Language and Linguistics 20, 829-850.
- Choi, J. and H. Yun. 2022. Effects of part and whole learning on the learning of L2 words and idioms. Korean Journal of English Language and Linguistics 22, 441-457.
- Choi, Y., H. Ahn and J. Lee. 2018. Anaphora resolution strategies in L2 reading. Korean Journal of English Language and Linguistics 18(4), 395-422. [https://doi.org/10.15738/kjell.18.4.201812.395]
- Crosthwaite, P., S. Ningrum and I. Lee. 2022. Research trends in L2 written corrective feedback: A bibliometric analysis of three decades of Scopus-indexed research on L2 WCF. Journal of Second Language Writing 58, 100934. [https://doi.org/10.1016/j.jslw.2022.100934]
- Das, M., S. Kamalanathan and P.J.A. Alphonse. 2023. A comparative study on TF-IDF feature weighting method and its analysis using unstructured dataset. In Proceedings of the COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems.
- Deveaud, R., E. SanJuan and P. Bellot. 2014. Accurate and effective latent concept modeling for ad hoc information retrieval. Document Mumérique 17, 61-84. [https://doi.org/10.3166/dn.17.1.61-84]
- Eroğlu, Y. and S. Seçkiner. 2016. Trend topic analysis for wind energy researches: A data mining approach using text mining. Journal of Technology Innovations in Renewable Energy 5, 44-58. [https://doi.org/10.6000/1929-6002.2016.05.02.2]
- Fayyad, U. M., G. Pitatesky-Shapiro, P. Smyth and R. Uthurasamy. 1996. Advances in Knowledge Discovery and Data Mining. CA: AAAI/MIT Press.
- Feldman, R. and I. Dagan. 1995. Knowledge discovery in textual databases (KDT). Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95). AAAI Press, 112-117.
- Field, A. 2009. Discovering Statistics Using SPSS. London: Sage.
- Goksu, I., E. Ozkaya and A. Gunduz. 2022. The content analysis and bibliometric mapping of CALL journal. Computer Assisted Language Learning 35(8), 2018-2048. [https://doi.org/10.1080/09588221.2020.1857409]
- Griffiths, T. L. and M. Steyvers. 2004. Finding scientific topics. In Proceedings of the National Academy of Sciences 101(Suppl 1), 5228-5235. [https://doi.org/10.1073/pnas.0307752101]
- Gupta, B., T. Mufti, S. S. Sohail and D. Ø. Madsen. 2023. ChatGPT: A brief narrative review. Cogent Business & Management 10, 3. [https://doi.org/10.1080/23311975.2023.2275851]
- Han, S. and Y. Lee. 2016. Developing a collocation test for Korean EFL learners: Test validation and item format effect. Korean Journal of English Language and Linguistics 16(2), 221-243. [https://doi.org/10.15738/kjell.16.2.201606.221]
- Harris, Z. S. 1954. Distributional structure. Word 10, 146-162. [https://doi.org/10.1080/00437956.1954.11659520]
- Hyland, K. and F. K. Jiang. 2021. A bibliometric study of EAP research: Who is doing what, where and when? Journal of English for Academic Purposes 49, 100929. [https://doi.org/10.1016/j.jeap.2020.100929]
- Jang, I. H. Kim and E. Choi. 2022. Exploring parental satisfaction with public English education during the COVID-19 pandemic in South Korea. Korean Journal of English Language and Linguistics 22, 377-395.
- Jin, H. 2023. Lexical frames and errors in the use of English definite article in L2 academic writing: A case of English placement test. Korean Journal of English Language and Linguistics 23, 324-341. [https://doi.org/10.15738/kjell.23..202304.324]
- Kang, D. 2022a. Effects of single translation marginal & multiple-choice glosses on L2 academic vocabulary learning. Korean Journal of English Language and Linguistics 22, 1417-1427.
- Kang, D. 2022b. An exploratory study of tasks & glosses on L2 academic vocabulary learning. Korean Journal of English Language and Linguistics 22, 1300-1312.
- Kang, D. 2022c. Effects of multiple-choice glosses & frequency on L2 academic vocabulary learning in Korea. Korean Journal of English Language and Linguistics 22, 695-705.
- Kang, H. and C. Lee. 2020. Effects of focus on form instruction through listening in blended learning on the development of grammar and listening skills. Korean Journal of English Language and Linguistics 20, 662-691.
- Kim, H., Y. Cha and N. Kim. 2021. Effects of AI chatbots on EFL students’ communication skills. Korean Journal of English Language and Linguistics 21, 712-734. [https://doi.org/10.22251/jlcci.2021.21.10.37]
- Kim, M, K. Ohk and C. Moon. 2017. Trend analysis by using text mining of journal articles regarding consumer policy. New Physics: Sae Mulli 67, 555-561. [https://doi.org/10.3938/NPSM.67.555]
- Kim. Y. 2016. Tough-constructions vs non-tough constructions. Korean Journal of English Language and Linguistics 16(3), 493-512. [https://doi.org/10.15738/kjell.16.3.201609.493]
- Kobayashi, V., S. T. Mol, H. A. Berkers, G. Kismihók and D. N. D. Hartog. 2018. Text classification for organizational researchers: A tutorial. Organizational Research Methods 21(3), 766-799. [https://doi.org/10.1177/1094428117719322]
- Kobayashi, V., S. T. Mol, H. A. Berkers, G. Kismihók and D. N. D. Hartog. 2018. Text classification for organizational researchers: a tutorial. Organizational Research Methods 21(3), 766-799. [https://doi.org/10.1177/1094428117719322]
- Kwon, E. and E. Park. 2015. Learners' awareness of comma usage and its effect on two types of writing tasks. Korean Journal of English Language and Linguistics 15(4), 713-738. [https://doi.org/10.15738/kjell.15.4.201512.713]
- Lawani, S. 1981. Bibliometrics: Its theoretical foundations, methods and applications. Libri, 31, 294-315. [https://doi.org/10.1515/libr.1981.31.1.294]
- Lee, a. 2019. Using virtual reality to test academic listening proficiency. Korean Journal of English Language and Linguistics 19(4), 688-712. [https://doi.org/10.15738/kjell.19.4.201912.688]
- Lee, J. 2014. Student annotations triggered by teacher feedback in L2 business writing. Korean Journal of English Language and Linguistics 14(4), 655-684. [https://doi.org/10.15738/kjell.14.4.201412.655]
- Lee, S, J. Baker, J. Song and J. C. Wetherbe. 2010. An empirical comparison of four text mining methods. 43rd Hawaii International Conference on System Sciences 1-10. [https://doi.org/10.1109/HICSS.2010.48]
- Lee, Y. 2023. Detecting suicide motes with the probability of positive sentiment and interquartile range. Korean Journal of English Language and Linguistics 23, 431-447. [https://doi.org/10.15738/kjell.23..202306.431]
- Lei, L. and D. Liu. 2019a. Research trends in applied linguistics from 2005 to 2016: A bibliometric analysis and its implications. Applied Linguistics 40(3), 540-561. [https://doi.org/10.1093/applin/amy003]
- Lei, L. and D. Liu. 2019b. The research trends and contributions of System’s publications over the past four decades (1973-2017): A bibliometric analysis. System 80, 1-13. [https://doi.org/10.1016/j.system.2018.10.003]
- Li, W. 2018. Translanguaging as a practical theory of language. Applied Linguistics 39(1), 9-30. [https://doi.org/10.1093/applin/amx039]
- Limna, P., T. Kraiwanit, T, K. Jangjarat, P. Klayklung, and P. Chocksathaporn. 2023. The use of ChatGPT in the digital era: Perspectives on chatbot implementation. Journal of Applied Learning and Teaching 6(1), 64-74. [https://doi.org/10.37074/jalt.2023.6.1.32]
- Lin, Z. and L. Lei. 2020. The research trends of multilingualism in applied linguistics and education (2000-2019): A bibliometric analysis. Sustainability 12(15), 6058. [https://doi.org/10.3390/su12156058]
- Mackey, A. and S. M. Gass. 2022. Second Language Research: Methodology and Design (3rd ed.). New York: Routledge. [https://doi.org/10.4324/9781003188414]
- Park, H. 2015. The effects of cognitive complexity on summary quality by Korean college students. Korean Journal of English Language and Linguistics 15(3), 463-491. [https://doi.org/10.15738/kjell.15.3.201509.463]
- Park, J. S.-Y. and A. Lo. 2012. Transnational South Korea as a site for a sociolinguistics of globalization: Markets, timescales, neoliberalism. Journal of Sociolinguistics 16(2), 147-164. [https://doi.org/10.1111/j.1467-9841.2011.00524.x]
- Plonsky, L. 2023. Introduction to the special issue on Introducing bibliometrics in applied linguistics. Studies in Second Language Learning and Teaching 13(4), 721-726. [https://doi.org/10.14746/ssllt.40213]
- Pritchard, A. 1969. Statistical bibliography or bibliometrics? Journal of Documentation 25(4), 348-349. [https://doi.org/10.1108/eb026482]
- Schober, P., C. Boer and L. A. Schwarte. 2018. Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia 126(6), 1763-1768. [https://doi.org/10.1213/ANE.0000000000002864]
- Sebastiani, F. 2002. Machine learning in automated text categorization. ACM Computing Surveys 34, 1-47. [https://doi.org/10.1145/505282.505283]
- Sin, D., H. Kim, J. Lee and H. Yang. 2021. Exploring the use of an artificial intelligence chatbot as second language conversation partners. Korean Journal of English Language and Linguistics 21, 375-391.
- Wiedemann, G. 2013. Opening up to big data: computer-assisted analysis of textual data in social sciences. Historical Social Research/Historische Sozialforschung 38(4), 332-357.
- Yang, D. 2017. The Determinism Issue in the minimalist theory: The derivational null hypothesis. Korean Journal of English Language and Linguistics 17(3), 429-448. [https://doi.org/10.15738/kjell.17.3.201709.429]
- Yang, I. 2018. Pause-Tonic Stress Interaction in English L2 Speech of Korean Talkers with Different Proficiency Levels. Korean Journal of English Language and Linguistics 18(1), 1-29. [https://doi.org/10.15738/kjell.18.1.201803.1]
- Yang, H. and H. Kim. 2021. Development and application of AI chatbot for cabin crews. Korean Journal of English Language and Linguistics 21, 1085-1104.
- Yang, X. D. and B. Jia. 2010. Vector space model based on Lucene index and TF-IDF weighting algorithm. Proceedings of 2010 Asia-Pacific Youth Conference on Communication 1-2, 20-23.
- Yu, M. 2023. The Effect of referential forms on incremental processing of long-distance dependencies: Evidence from English cleft sentences. Korean Journal of English Language and Linguistics 23, 913-934. [https://doi.org/10.15738/kjell.23..202310.913]
- Zawacki-Richter, O., Kerres, M. Bedenlier, S. Bond, M and Buntins. K. (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application. Wiedbaden: Springer Nature. [https://doi.org/10.1007/978-3-658-27602-7]
- Zhang, W., T. Yoshida and X. Tang. 2011. A comparative study of TF* IDF, LSI and multi-words for text classification. Expert Systems with Applications 38(3), 2758-2765. [https://doi.org/10.1016/j.eswa.2010.08.066]
- Zhang, X. 2020. A bibliometric analysis of second language acquisition between 1997 and 2018. Studies in Second Language Acquisition 42(1), 199-222. [https://doi.org/10.1017/S0272263119000573]